CHAPTER

3

ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define corre-
sponding functions of a complex variable. To be specific, we define analytic functions
of a complex variable z that reduce to the elementary: functions in calculus when
z=x +i0. We start by defining the complex exponential function and then use it
to develop the others.

28. THE EXPONENTIAL FUNCTION

As anticipated earlier (Sec. 13), we define here the exponential function e? by writing
(1) ef=ee?  (z=x+iy),

where Euler's formuia (see Sec. 6)

{2) e =cosy+isiny

is used and y is to be taken in radians. We see from this definition that ¢? reduces to
the usual exponential function in calculus when y = 0; and, following the convention
used in calculus, we often write exp z for e2.

Note that since the positive nth root /e of e is assigned to e* when x = l/n
(n=2,3,...), expression (1) tells us that the complex exponential function &° is also
Wewhenz=1/n(n=2,3,...). Thisis an exception to the convention (Sec. 8) that
would ordinarily require us to interpret e!/” as the set of nth roots of e.
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According to definition (1), €* ¢i¥ = ¢*+¥: and, as already pointed out in Sec. 13,
the definition is suggested by the additive property '

52 — e.rﬁ-x;
of ¢* in calculus. That property’s extension,
(3j ehlg¥t = ezx+22’
to complex analysis is easy to prove. To do this, we write
zy=x+iy; and zz=Xx;+ iya.
Then .
et = (exleih)(exzel'h) = (ex1exz)(ei}';ef}'2)|
But x, and x, are both real, and we know from Sec. 7 that
eiVgitr = oty
Hence
il = g Frta) gl ya)
and, since
(x1+%2) + iy + ¥o) = (xy +iy) + (2 + i¥2) =21+ 225

the right-hand side of this last equation becomes 21722, Property (3) isnow established
Observe how property (3) enables us to write eliT2gh? = g%, or

21

€ -

4) S
e?2

From this and the fact that ¢? = 1, it follows that 1/e* =¢7%.
There are a number of other important properties of * that are expected. Accord
ing to Example 1 in Sec. 21, for instance,

(5 dize’“ = ¢t

everywhere in the z plane. Note that the differentiability of ¢* for all z tells us th
&% is entire (Sec. 23). It is also true that

(6) ¢* £0 for any complex number z.
This is evident upon writing definition (1) in the form

e? = pe' where p=e"and ¢ =7y,
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which tells us that
)] lef| =¢* and arg(e’)=y+2nr (n=0,£1, £2,...).

Statement (6) then follows from the observation that |¢?| is always positive.
Some properties of e® are, however, not expected. For example, since

ez+2m 2mi 1,

=é*e*™ and e
we find that e® is periodic, with a pure imaginary period 2rd:
(8) et = g2,

The following example illustrates another property of e* that £¥ does not have.
Namely, while ¢* is never negative, there are values of & that are.

EXAMPLE. Theré are values of z, for instance, such that
(9) ' & =1

To find them, we write equation (9) as e¥e’” = 1¢"™. Then, in view of the statement
in italics at the beginning of Sec. 8 regarding the equality of two nonzero complex
numbers in exponential form,

=1 and y=unu+2nnm (n=0,%1,%£2,..).
Thus x = 0, and we find that
(10) " 1=Cn+Dri (=0, +1, £2,..).

EXERCISES
1. Show that

@exp(2+3mi) =—e%  (b)exp (2 ':”") - \/g (+ 1)

(c)exp(z + i) =~ expz.

2. State why the function 222 — 3 — ze? + % is entire.

3. Use the Cauchy—Riemann equations and the theorem in Sec. 20 to show that the function
f(z) = expZ is not analytic anywhere.

4. Show in two ways that the function exp{z2) is entire. What is its derivative?
Ans. 27 exp(z%).
5. Write lexp(2z + )| and |exp(iz2)| in terms of x and y. Then show that
lexp(2z + i) + exp(iz?)| < €= + e,

_ 6. Show that lexp(z2)| 58xp(|z|2_).
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7. Prove that Jexp(—2z)| < 11f and only if Re z > 0.
8. Find all values of z such that
(@)et==2  (B)et=14++/3; ()expRz—1=1
Ans. (@z=I2+2n+Dri (n=0,£1,£2,..
Pyz=In2+ (Zn + :—:-)m' (n=0,4+1,4+2,..;
'(c)z:—-21—+mri n=0,£1,£2, ...}
9. Show that exp{iz) = exp(iZ) if and only if z=nxr (n =0, £1, £2, ...). (Compare
Exercise 4, Sec. 27.)
10. (a) Show thatif e? isreal, thenImz =nm (n =0, L1, £2, .. .).
(B) If e* is pure imaginary, what restriction is placed on z?
11. Describe the behavior of e? = e*¢'? as (a) x tends to —oc; (&) y tends to 0o,

12. Write Re(e'/?) in terms of x and y. Why is this function harmonic in every domain that
does not contain the origin?

13. Letthe function f(z) = u{x, y) + iv(x, ¥) be analytic in some domain D. State why the
functions

Ulx, y) = 405 eng vix,y), Vix,y)= 43 gip v(x, y)

are harmonic in D and why V (x, y) is, in fact, a harmonic conjugate of U (x, y).
14. Establish the identity

('=e" (n=0,£1,+£2,...)

in the following way.

(@) Use mathematical induction to show that it is valid when n =0,1,2, ... .
(k) Verify it for negative integers r by first recalling from Sec. 7 that

S=GY m=-n=12,..)

when z #£ 0 and writing (e*)" = (1/€*)™. Then use the result in part {a), together
with the property 1/¢* = e™% (Sec. 28) of the exponential function.

29. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on sclving the
equation

(1) =z

for w, where 7 is any nonzero complex number. To do this, we note that when z and
ware written z =re'?(—r < @ <m)andw =u + iv, equation (1) becomes

e¥elV = re'®,



