CHAPTER

3

ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of a complex variable z that reduce to the elementary functions in calculus when z = x + i0. We start by defining the complex exponential function and then use it to develop the others.

28. THE EXPONENTIAL FUNCTION

As anticipated earlier (Sec. 13), we define here the exponential function e^z by writing

(1)
$$e^{z} = e^{x}e^{iy}$$
 $(z = x + iy)$,

where Euler's formula (see Sec. 6)

(2)

$$e^{iy} = \cos y + i \sin y$$

is used and y is to be taken in radians. We see from this definition that e^z reduces to the usual exponential function in calculus when y = 0; and, following the convention used in calculus, we often write exp z for e^z .

Note that since the *positive* nth root $\sqrt[n]{e}$ of e is assigned to e^x when x = 1/n (n = 2, 3, ...), expression (1) tells us that the complex exponential function e^z is also $\sqrt[n]{e}$ when z = 1/n (n = 2, 3, ...). This is an exception to the convention (Sec. 8) that would ordinarily require us to interpret $e^{1/n}$ as the set of nth roots of e.

CHAP. 3

According to definition (1), $e^x e^{iy} = e^{x+iy}$; and, as already pointed out in Sec. 13, the definition is suggested by the additive property

$$e^{x_1}e^{x_2} = e^{x_1+x_2}$$

of e^x in calculus. That property's extension,

(3)
$$e^{z_1}e^{z_2} = e^{z_1+z_2},$$

to complex analysis is easy to prove. To do this, we write

$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$.

Then

$$e^{z_1}e^{z_2} = (e^{x_1}e^{iy_1})(e^{x_2}e^{iy_2}) = (e^{x_1}e^{x_2})(e^{iy_1}e^{iy_2})$$

But x_1 and x_2 are both real, and we know from Sec. 7 that

$$e^{iy_1}e^{iy_2} = e^{i(y_1+y_2)}$$
.

Hence

$$e^{z_1}e^{z_2} = e^{(x_1+x_2)}e^{i(y_1+y_2)};$$

and, since

$$(x_1 + x_2) + i(y_1 + y_2) = (x_1 + iy_1) + (x_2 + iy_2) = z_1 + z_2$$

the right-hand side of this last equation becomes $e^{z_1+z_2}$. Property (3) is now established Observe how property (3) enables us to write $e^{z_1-z_2}e^{z_2} = e^{z_1}$, or

(4)
$$\frac{e^{z_1}}{e^{z_2}} = e^{z_1 - z_2}.$$

From this and the fact that $e^0 = 1$, it follows that $1/e^z = e^{-z}$.

There are a number of other important properties of e^z that are expected. According to Example 1 in Sec. 21, for instance,

(5)
$$\frac{d}{dz}e^z = e^z$$

everywhere in the z plane. Note that the differentiability of e^z for all z tells us the e^z is entire (Sec. 23). It is also true that

(6)
$$e^z \neq 0$$
 for any complex number z.

This is evident upon writing definition (1) in the form

$$e^z = \rho e^{i\phi}$$
 where $\rho = e^x$ and $\phi = y$,

SEC. 28

(7)

(8)

(9)

which tells us that

$$|e^{z}| = e^{x}$$
 and $\arg(e^{z}) = y + 2n\pi$ $(n = 0, \pm 1, \pm 2, ...).$

Statement (6) then follows from the observation that $|e^z|$ is always positive. Some properties of e^z are, however, *not* expected. For example, since

$$e^{z+2\pi i} = e^z e^{2\pi i}$$
 and $e^{2\pi i} = 1$,

we find that e^z is periodic, with a pure imaginary period $2\pi i$:

 $e^{z+2\pi i}=e^z.$

The following example illustrates another property of e^z that e^x does not have. Namely, while e^x is never negative, there are values of e^z that are.

EXAMPLE. There are values of z, for instance, such that

 $e^z = -1.$

To find them, we write equation (9) as $e^{x}e^{iy} = 1e^{i\pi}$. Then, in view of the statement in italics at the beginning of Sec. 8 regarding the equality of two nonzero complex numbers in exponential form,

$$e^x = 1$$
 and $y = \pi + 2n\pi$ $(n = 0, \pm 1, \pm 2, ...)$.

Thus x = 0, and we find that

(10)
$$z = (2n+1)\pi i$$
 $(n = 0, \pm 1, \pm 2, \ldots).$

EXERCISES

1. Show that

(a)
$$\exp(2 \pm 3\pi i) = -e^2;$$
 (b) $\exp\left(\frac{2+\pi i}{4}\right) = \sqrt{\frac{e}{2}}(1+i);$
(c) $\exp(z+\pi i) = -\exp z.$

- 2. State why the function $2z^2 3 ze^z + e^{-z}$ is entire.
- 3. Use the Cauchy-Riemann equations and the theorem in Sec. 20 to show that the function $f(z) = \exp \overline{z}$ is not analytic anywhere.
- 4. Show in two ways that the function $\exp(z^2)$ is entire. What is its derivative? Ans. $2z \exp(z^2)$.
- 5. Write $|\exp(2z + i)|$ and $|\exp(iz^2)|$ in terms of x and y. Then show that

$$|\exp(2z+i) + \exp(iz^2)| \le e^{2x} + e^{-2xy}.$$

6. Show that $|\exp(z^2)| \le \exp(|z|^2)$.

90 ELEMENTARY FUNCTIONS

- 7. Prove that $|\exp(-2z)| < 1$ if and only if Re z > 0.
- 8. Find all values of z such that

(a)
$$e^{z} = -2;$$
 (b) $e^{z} = 1 + \sqrt{3}i;$ (c) $\exp(2z - 1) = 1.$
Ans. (a) $z = \ln 2 + (2n + 1)\pi i$ $(n = 0, \pm 1, \pm 2, ...);$
(b) $z = \ln 2 + \left(2n + \frac{1}{3}\right)\pi i$ $(n = 0, \pm 1, \pm 2, ...);$
(c) $z = \frac{1}{2} + n\pi i$ $(n = 0, \pm 1, \pm 2, ...).$

- 9. Show that $\overline{\exp(iz)} = \exp(i\overline{z})$ if and only if $z = n\pi$ $(n = 0, \pm 1, \pm 2, ...)$. (Compare Exercise 4, Sec. 27.)
- 10. (a) Show that if e^z is real, then Im z = nπ (n = 0, ±1, ±2, ...).
 (b) If e^z is pure imaginary, what restriction is placed on z?
- 11. Describe the behavior of $e^z = e^x e^{iy}$ as (a) x tends to $-\infty$; (b) y tends to ∞ .
- 12. Write $\operatorname{Re}(e^{1/z})$ in terms of x and y. Why is this function harmonic in every domain that does not contain the origin?
- 13. Let the function f(z) = u(x, y) + iv(x, y) be analytic in some domain D. State why the functions

$$U(x, y) = e^{u(x, y)} \cos v(x, y), \quad V(x, y) = e^{u(x, y)} \sin v(x, y)$$

are harmonic in D and why V(x, y) is, in fact, a harmonic conjugate of U(x, y).

14. Establish the identity

$$(e^{z})^{n} = e^{nz}$$
 $(n = 0, \pm 1, \pm 2, \ldots)$

in the following way.

- (a) Use mathematical induction to show that it is valid when n = 0, 1, 2, ...
- (b) Verify it for negative integers n by first recalling from Sec. 7 that

$$z^n = (z^{-1})^m$$
 $(m = -n = 1, 2, ...)$

when $z \neq 0$ and writing $(e^z)^n = (1/e^z)^m$. Then use the result in part (a), together with the property $1/e^z = e^{-z}$ (Sec. 28) of the exponential function.

29. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on solving the equation

 $e^w = z$

(1)

for w, where z is any *nonzero* complex number. To do this, we note that when z and w are written $z = re^{i\Theta}(-\pi < \Theta \le \pi)$ and w = u + iv, equation (1) becomes

$$e^{u}e^{iv}=re^{i\Theta}$$
.